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Patients with schizophrenia are often plagued by sleep dis-
turbances that can exacerbate the illness, including poten-
tiating psychosis and cognitive impairments. Cognitive 
dysfunction is a core feature of schizophrenia with learning 
and memory being particularly impaired. Sleep disruptions 
often accompanying the illness and may be key mechanism 
that contribute to these core dysfunctions. In this special 
translational neuroscience feature, we highlight the role of 
sleep in mediating cognitive function, with a special focus 
on learning and memory. By defining dysfunctional sleep 
architecture and rhythms in schizophrenia, we focus on the 
disarray of mechanisms critical to learning and memory 
and postulate an association between sleep disturbances 
and cognitive impairments in the disorder. Lastly, we review 
preclinical models of schizophrenia and highlight exciting 
translational research that may lead to new therapeutic 
approaches to alleviating sleep disturbances and effectively 
improving cognitive function in schizophrenia.

Key words:  sleep/schizophrenia/cognition/memory/ 
spindles/animal models

Disturbances in sleep are more common in individu-
als with schizophrenia than in the general population,1 
presenting a clinical need to diagnose, understand the 
impact, and effectively treat these problems. Sleep 
disturbances often present before the hallmark clin-
ical diagnosable symptoms and may serve as strong 
predictors for manifestation of  psychosis, as well as 
cognitive and mood disturbances. This special feature 
focuses on the relationship between sleep problems 
and impairments in learning and memory, a core cog-
nitive symptom of  schizophrenia. Further elucidating 
these relationships through translational neurosci-
ence research may facilitate efforts to treat sleep prob-
lems and potentially improve cognitive dysfunction in 
schizophrenia.

To introduce the notion that sleep disruptions in 
patients with schizophrenia likely contribute to learning 
and memory dysfunction, background on sleep, sleep 
deprivation, and sleep disturbances in schizophrenia will 
be presented first. We will then discuss basic neuroscience 
research that supports the causal role of sleep in mem-
ory processes and highlight research that supports the 
hypothesis that poor sleep outcomes contribute to cog-
nitive dysfunction in schizophrenia. Lastly, we discuss 
research that has investigated sleep in animal models that 
serve as useful tools to translationally study schizophre-
nia. Taken together, the goal of this special translational 
neuroscience feature is to highlight current research and 
encourage further research that unravels the neurobiolog-
ical mechanisms between sleep disturbances and learning 
and memory impairments in schizophrenia.

Introduction to Sleep

There remains no consensus theory on the purpose of 
sleep, but it is vital to all living beings. Past and current 
hypotheses of the function of sleep include energy conser-
vation, restoration, plasticity, memory consolidation, and 
housekeeping to maintain brain homeostasis. Therefore, 
it is highly likely that sleep serves multiple functions. 
Sleep is a daily, cyclic process that is divided into phases 
of rapid eye movement (REM) and non-rapid eye move-
ment (NREM) sleep.2 Sleep stages are specifically char-
acterized by electroencephalogram (EEG) oscillations. 
NREM sleep is divided into 3 stages, denoted 1–3, which 
progress to increasingly deeper sleep and are character-
ized by distinct sleep spindles and slow waves. Stage 3 is 
often referred to as slow wave sleep (SWS) because of the 
large delta (0.5–2 Hz) waves. SWS is also considered the 
deepest sleep. During REM sleep, also referred to as para-
doxical sleep, the EEG looks very similar to being awake, 
however muscle tone is completely suppressed during this 
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stage. Dreaming often occurs during REM sleep. A typ-
ical night of normal sleep for a human consists of 4–5 
sleep cycles, each initiated with NREM sleep and con-
cluding with REM sleep, and lasting about 90 min.3,4

The sleep/wake cycle is coordinated by interplay 
between circadian and homeostatic mechanisms. The 
circadian rhythm arises from the hypothalamic supra-
chiasmatic nuclei, which coordinate information from 
photoreceptor cells in the retina that respond to light and 
an array of entrained cues. The entrained cues include 
information about levels of arousal, locomotor activity, 
feeding, social interactions, sleep deprivation, and body 
temperature.5 The homeostatic mechanisms at play reg-
ulate the duration and type of sleep based on the body’s 
need for sleep, determined by sleep pressure which 
increases during wakefulness and declines during sleep. 
Under normal, healthy conditions, the circadian and 
homeostatic mechanisms operate in synchrony and influ-
ence the quality and length of an individual’s sleep.6

Sleep deprivation in healthy individuals negatively 
impacts brain function and can result in psychotic-like 
features, impaired cognition,7 and mood alterations8 that 
are remarkably similar to core features of schizophre-
nia. Inadequate sleep can be due to either a decrease in 
the amount of sleep or poor quality of sleep. The latter 
depends on the number of awakenings during the night. 
As the first study of sleep deprivation was conducted over 
100 years ago,9 significant progress in understanding the 
role of sleep and the consequences of being sleep deprived 

have been made over the last century. The deleterious 
effects of sleep deprivation are not limited to, but include 
(1) cognitive impairments, (2) mental health disturbances, 
including hallucinations, delusions, and depressed mood, 
(3) impairments in immune function, and (4) increased 
risk of chronic life-threatening disorders such as cardi-
ovascular disease and diabetes.10,11 In the laboratory set-
ting, sleep deprivation in healthy individuals has been 
investigated as a model of psychosis.7,12 A  side-by-side 
comparison of sleep deprivation and symptoms of schiz-
ophrenia illustrates a conspicuous similarity between the 
two, as shown in figure 1. Of note, cognition is impaired 
across multiple domains, especially learning and memory, 
under both sleep deprivation conditions and in the illness.

Sleep in Schizophrenia

While in the general population approximately 30% of 
people complain of intermittent problems with sleep, 
approximately 50–80% of patients with schizophrenia 
report sleep problems.1 Sleep disturbances in patients 
with schizophrenia have been described since the first 
clinical reports of the disorder. German psychiatrist Emil 
Kraepelin first wrote about abnormal sleep in schizo-
phrenia in the late 19th century and recommended “rest 
in bed” and “care for sleep” as important requisites 
for treatment.13 The eloquently evocative First Person 
Account pieces in Schizophrenia Bulletin regularly reflect 
on disturbances in sleep that are habitually plaguing 

Fig. 1. Illustration of the striking similarities between symptoms of sleep deprivation and schizophrenia.
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individuals living with the disorder. Personal accounts by 
those suffering from schizophrenia have described trou-
ble falling asleep,14–16 prolonged periods of not sleeping,17 
paranoia when considering sleep,18 and perpetual feel-
ings of stress because of the inability to sleep.17,19 These 
accounts have been quantified objectively in the labora-
tory setting and support the notion that patients suffer 
from sleep disturbances.20–23 In many cases, sleep dysfunc-
tion is correlated to the severity of psychotic24–26 and cog-
nitive27 symptoms in an individual with schizophrenia, 
and episodes of insomnia often precede exacerbation of 
psychotic symptoms.28

Traditionally, sleep problems have been regarded as sec-
ondary to the primary diagnostic criteria for schizophre-
nia. However in other mental disorders, such as depression, 
mania and hypomania, anxiety, and post-traumatic stress 
disorder (PTSD), problems with sleep are core to the symp-
tomology.29 In line with compelling observational research 
showing that sleep problems worsen many hallmark fea-
tures of the illness and that sleep disturbances often pres-
ent before the full-blown onset of schizophrenia,30 sleep 
problems may actually be a core pathophysiological com-
ponent of schizophrenia. In spite of the converging evi-
dence for disordered sleep in schizophrenia, no rigorously 
controlled laboratory studies have investigated the impact 
of sleep loss on core features of schizophrenia. Therefore, 
it remains unclear if the sleep disruptions are actually pri-
mary to psychosis in schizophrenia. Sleep loss studies in 
stabilized patients are needed to address this question and 
the contribution of transdiagnostic associations, ie, core 
antecedents of the disorder that may be impacting sleep, 
should be carefully considered.31,32

Complaints of insomnia, the inability to sleep, in 
patients with schizophrenia have been verified by poly-
somnography (PSG) recordings—multi-parametric tests 
to study sleep—that document decreased sleep effi-
ciency (total sleep time divided by the time spent in bed), 
increased latency of sleep onset, and increased time awake 
after sleep onset not due to apnea or other sleep disor-
ders.33,34 As these PSG findings have also been confirmed 
in antipsychotic-naïve and unmedicated patients, it sug-
gests that sleep disturbances are not simply a side-effect 
of medications, but may rather be classified as features 
of the disorder.35,36 Changes in circadian rhythmicity, 
including phase advances and alterations in hormone 
secretion, have also been reported.37,38 Moreover, patients 
with schizophrenia are increasingly diagnosed with 
comorbid sleep disorders including breathing disorders 
(eg, obstructive sleep apnea), hypersomnolence, move-
ment disorders during sleep (eg, restless leg syndrome or 
periodic limb movement disorder), and parasomnias.39,40 
A thorough discussion of comorbidity of these sleep dis-
orders in patients with schizophrenia is beyond the scope 
of the present special feature and the reader is referred to 
Klingaman et al41 for further review.

Striking and diverse abnormalities in sleep architec-
ture, defined as the amount and pattern spent in different 
stages, have been reported in PSG studies with schizo-
phrenia patients (see Chan et  al42 for comprehensive 
review). The heterogeneity of the disorder mirrors the 
array of abnormalities in PSG measurements reported 
in patients with schizophrenia. Most frequently, studies 
have reported a reduction in the total time sleeping and a 
greater latency to fall asleep. Decreases in REM latency 
and duration, as well as reductions in total NREM for a 
night of sleep have been commonly reported in patients 
with schizophrenia.43–47

Given that antipsychotic medications may impact sleep 
architecture in patients, studies have also been conducted 
in antipsychotic-naïve patients and antipsychotic-with-
drawal patients. Two meta-analyses report that antipsy-
chotic-free patients display disrupted sleep compared to 
healthy controls.35,42 Withdrawal from antipsychotic med-
ications has been reported to impact sleep architecture, 
warranting caution when interpreting results from these 
studies.42 Traditionally antipsychotic treatment, including 
first- and second-generation medications, has improved 
patients’ sleep by increasing the total time sleeping and 
the efficiency of sleep.1,48

In summary, sleep problems are significantly higher in 
schizophrenia when compared to the general population, 
and detrimentally impact clinical outcome that includes 
cognitive function. Data from a recent randomized con-
trol trial (OASIS) provide strong evidence that sleep loss 
causally contributes to psychotic experiences49 and places 
new attention on sleep alterations in schizophrenia as pri-
mary outcomes of the illness.

Role of Sleep in Memory Processes: Implications for 
Schizophrenia

Sleep is vital for brain plasticity and memory consolida-
tion.11,50–52 It is, thus, paramount to consider the physio-
logical role of sleep when discussing how malfunctions in 
sleep may contribute to psychotic features and compro-
mise cognitive function in schizophrenia. While the intri-
cacies of sleep contributing to memory processes remain 
unclear and disputed, there is substantial evidence sup-
porting a role of slow wave oscillations, thalamocorti-
cal sleep spindles, and hippocampal sharp wave-ripples 
that occur during NREM sleep and theta oscillations 
and ponto-geniculo-occipital (PGO) waves that occur 
during REM sleep.53 The “active systems consolidation” 
hypothesis suggests that representations of memory are 
reprocessed during NREM sleep that occurs subsequent 
to learning. This model proposes that new information is 
initially encoded into the hippocampus and when NREM 
sleep occurs, the memory representations become reac-
tivated and unified with pre-existing information in the 
neocortex.53 Of note, recent reports have challenged a 
solo role of the hippocampus to encode new information, 
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placing attention on the neocortex to encode and con-
solidate newly acquired information.54 Alternatively, the 
“synaptic homeostasis” hypothesis suggests that SWS 
indirectly influences memory. Accordingly, synapses 
that are potentiated during an encoding event are subse-
quently downscaled during SWS, such that weak connec-
tions are selectively eliminated.55–57

These two hypotheses are certainly not mutually exclu-
sive,58 signifying the importance of neocortical regions 
as well as the hippocampus to encode new information. 
During NREM sleep that occurs post-learning, slow 
waves that originate in neocortical networks entrain hip-
pocampal sharp wave-ripples that propagate the replay 
and an active reorganization of the memory in the hippo-
campus and the neocortex. Subsequently, sleep spindles, 
which are short, distinct waves of 12–16 Hz oscillations 
that occur during stage 2 of NREM sleep, are relayed 
between the thalamic nuclei and cortex for synchroni-
zation and sustainment across sleep periods,59 and assist 
in modulating memory consolidation and plasticity.60 
Finally, memory consolidation has been shown to rely on 
the temporal coordination between hippocampal sharp 
wave-ripples, SWS, and spindles61 and disruption in this 
temporal coordination has been reported in a rodent 
model relevant to the study of schizophrenia, further dis-
cussed below.62

Hippocampus-generated theta oscillations (4–8 Hz), 
PGO waves, and high cholinergic tone during REM sleep 
are also hypothesized to contribute to memory consoli-
dation.53 While REM sleep has been implicated in specifi-
cally consolidating perceptual memory63–65 and emotional 
memory,66 the exact contribution of REM to memory 
consolidation processes remains to be fully understood.67 
Causal evidence for hippocampal theta rhythmicity in 
memory consolidation was recently demonstrated in a 
mouse model wherein optogenetic silencing of inhibitory 
neurons in the medial septum ablated REM. Notably, 
suppression of REM sleep theta oscillations in these ani-
mals significantly impaired their ability to learn a hippo-
campal-dependent memory task.68

Sleep-dependent memory consolidation is compro-
mised in patients with schizophrenia. Recent research in 
patients has focused on identifying abnormalities in spe-
cific rhythms during NREM such as slow oscillations and 
sleep spindles. Preclinical studies in animals and human 
studies have demonstrated an increase in density of 
spindles after learning.69–71 Sleep spindles are implicated 
in promoting both procedural72,73 and declarative74,75 
memory consolidation. Investigators have used a motor 
sequence task (MST) to assess sleep-dependent motor 
procedural memory and found that an improvement in 
performance after sleep was correlated with sleep spindle 
density.73,76,77 Of note, patients with schizophrenia perform 
worse than controls on the MST, lack a significant perfor-
mance improvement on the MST after sleep,78–80 and have 
reduced spindle density that is correlated with the poorer 

MST performance.80 Deficits in sleep spindles have also 
been correlated with poor outcomes in sleep-dependent 
consolidation of a declarative memory task in patients 
with schizophrenia.81 Recent efforts have extended this 
work to focus on the role of temporal coordination of 
spindles and SWS in memory consolidation in schizo-
phrenia.82 Results showed that spindle number and den-
sity were decreased but spindle-SWS coordination was 
normal in medicated patients with schizophrenia. The 
spindle-SWS coordination was related to improvement 
in procedural memory performance following a night’s 
sleep in patients. Therefore, enhancing spindles and spin-
dle-SWS coordination may enhance memory function in 
schizophrenia. It is important to note that hippocampal 
sharp wave-ripples, a key component in the temporally 
coordinated network involved in memory consolida-
tion,61 are challenging to measure with noninvasive meth-
ods in humans. Taken together, deficits in sleep spindles 
in patients with schizophrenia may serve as one marker 
of impaired thalamocortical circuit function, sleep-
dependent memory processing, and possibly a mechan-
ism for memory impairments in the disorder. However, 
despite a rich body of evidence, the exact relationship of 
spindle deficits in schizophrenia, including unmedicated 
and first-episode psychosis patients, to cognitive dysfunc-
tions in the disorder remains to be fully characterized.

Sleep in Animal Models Relevant for Schizophrenia 
Etiology

Animal models have proven instrumental to understand-
ing pathophysiological mechanisms of schizophrenia, 
and particular emphasis has been placed on modeling 
dysfunctions in cognition. Sleep abnormalities have been 
only marginally investigated in preclinical models, but 
the work thus far provides resounding support for dys-
functional sleep as a neurobiological characteristic of 
schizophrenia. Preclinical genetic, prenatal, and neuro-
transmitter models pertaining to schizophrenia and sleep 
dysfunction are reviewed below.

Genetic

Disrupted-in-schizophrenia-1 (DISC1) has been iden-
tified as a leading genetic factor for various mental ill-
nesses, including schizophrenia,83 and a role for DISC1 in 
regulating sleep has been described in both the Drosophila 
melanogaster fruit fly84 and mice.85 Another genetic 
mouse model with a deficit in stable tubule only polypep-
tide (STOP) also displays neurophysiological and neu-
roanatomical abnormalities that resemble deficits seen 
in schizophrenia. The STOP null mice present cognitive 
and behavioral impairments, including deficits in hippo-
campal-dependent learning and abnormal social behav-
iors,86–88 and assessments of sleep-wake patterns in this 
mouse model indicate less total sleep and fragmentation 
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in sleep-wake periods, further validating this model for 
the study of schizophrenia.89,90

Prenatal

The neurodevelopmental hypothesis of schizophrenia sug-
gests that insults during early brain development increase 
the risk of subsequent manifestation of the disorder in 
adulthood.91 The prenatal insult MAM-17 neurodevel-
opmental model induces a disruption in hippocampal 
and prefrontal embryogenesis with the administration 
of an antimitotic agent, methylazoxymethanol-acetate 
(MAM), on embryonic day 17 to pregnant rat dams.92 
Disrupted coordination between neocortical slow-waves, 
hippocampal ripples, and subsequent prefrontal cortical 
spindles during NREM sleep have been characterized in 
adult offspring. The fragmentation in NREM and impair-
ments in slow-wave propagation highlight circuitry-based 
deficits that are postulated to be disrupted in schizophre-
nia, and the model provides translational value to investi-
gating these deficits.62

Persistent sleep alterations, including increased sleep 
fragmentation and decreased duration of SWS relative to 
total sleep time, have been reported in a rat model of pre-
natal stress exposure. In addition, the adult offspring in 
this model have a dysfunctional hypothalamo-pituitary-
adrenal axis, display cognitive impairments, and present 
abnormal circadian timing.93,94

Prenatal exposure to an inflammatory mimetic, lipopol-
ysaccharide (LPS), a component of the outer-membrane 
of Gram-negative bacteria that mimics an inflammatory 
stimulus, has also been shown to significantly alter sleep-
wake architecture and induce significantly longer average 
NREM bout durations during the dark phase in mice. 
Additionally, exposure to inflammation in utero was 
shown to adversely impact delta power during NREM 
such that the ratios of delta power were no longer diur-
nally altered over the 24 h cycle.95

Neurotransmitter

Lastly, both glutamatergic and cholinergic transmis-
sion are critically involved in cognition,96,97 schizophre-
nia pathophysiology,98 sleep-dependent plasticity,99 and 
modulation of sleep and arousal.100–102 As such, the role 
of the kynurenine pathway, and kynurenic acid (KYNA), 
an endogenous antagonist of α7 nicotinic acetylcholine 
(α7nACh) and glutamate NMDA receptors, in particu-
lar, in mediating a relationship between sleep and cog-
nitive function is currently under investigation.103,104 
Distinct abnormalities in tryptophan metabolism via the 
kynurenine pathway have been reported in schizophre-
nia. Specifically, KYNA is increased in the postmortem 
brain tissue and cerebrospinal fluid samples of patients 
with schizophrenia.105,106 In line with the neurodevelop-
mental hypothesis of schizophrenia etiology, models to 

study the KYNA hypothesis of schizophrenia have been 
developed,107 and studies linking sleep and cognitive dys-
functions in adulthood are ongoing.108

In summary, emerging evidence indicates that sleep 
alterations occur in a variety of rodent models of schiz-
ophrenia that translate to findings in humans. Although 
these combined results are intriguing, greater progress is 
needed to determine if  these sleep alterations are causally 
linked to cognitive impairments or other behavioral phe-
notypes that represent features of schizophrenia.

Closing Remarks

This feature focused on sleep disruptions in patients with 
schizophrenia as contributing factors to cognitive impair-
ments in the disorder. As discussed, it has been consist-
ently shown that nightly disruptions in sleep serve as a 
strong predictor of poor functioning the next day and 
greater severity of symptoms in individuals with schiz-
ophrenia. Treating sleep disturbances in schizophrenia, 
through the use of cognitive behavioral therapy, medica-
tions,31,32 or other treatments specific to the sleep disorder 
diagnosis, should be further explored to understand how 
such interventions directly or indirectly improve cognitive 
symptoms.

Psychiatrists, sleep medicine practitioners, and 
researchers alike are encouraged to increasingly work 
together and bring further attention to sleep problems 
in patients with schizophrenia. The ultimate goal should 
be to further our understanding of the abnormalities 
and to improve cognition, physical and mental health 
for patients. As discussed, several caveats should be also 
be considered as progress is made in this field, including 
transdiagnostic associations that may contribute to sleep 
disturbances and the use of medications among the men-
tally ill population.26,31,32

In this translational piece, we highlighted key advance-
ments in understanding the sleep disturbances in schiz-
ophrenia and the contribution of these disruptions to 
cognitive dysfunction, specifically memory, in schizophre-
nia. Preclinical research that investigates the basic neuro-
biological mechanisms between sleep and memory may 
better inform our understanding of the interplay between 
sleep disturbances and cognitive impairments in schizo-
phrenia. Therapeutic approaches that improve sleep have 
the potential to improve cognitive function, the quality 
of life for patients, and may serve as preemptive interven-
tions for exacerbation of schizophrenia symptomology.
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